Chapter 8

Introduction to Modelling
and Simulation

8.1 The Challenge

In the study of turbulent flows—as in other fields of scientific inquiry—
the ultimate objective is to obtain a tractable quantitative theory or model
that can be used to calculate quantities of interest and practical relevance. A
century of experience has shown the “turbulence problem” to be notoriously
difficult, and there are no prospects of a simple analytic theory. Instead, the
hope is to use the ever-increasing power of digital computers to achieve
the objective of calculating the relevant properties of turbulent flows. In
the subsequent chapters, five of the leading computational approaches to
turbulent flows are described and examined.

It is worthwhile at the outset to reflect on the particular properties of
turbulent flows that make it difficult to develop an accurate tractable theory
or model. The velocity field U(x,t) is three-dimensional, time-dependent
and random. The largest turbulent motions are almost as large as the char-
acteristic width of the flow, and consequently are directly affected by the
boundary geometry (and hence are not universal). There is a large range of
timescales and lengthscalesi Relative to the largest scales, the Kolmogorov
timescale decreases as Re” 2, and the Kolmogorov lengthscale as Re”. In
wall-bounded flows, the most energetic motions (that are responsible for the
peak turbulence production) scale with the viscous lengthscale d,, which is
small compared to outer scale §, and which decreases (relative to §) approx-
imately as Re 8.

Difficulties arise from the non-linear convective term in the Navier-Stokes
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equations, and much more so from the pressure-gradient term. When ex-
pressed in terms of velocity (via the solution to the Poisson equation, Eq. 2.49
on page 21) the pressure-gradient term is both non-linear and non-local.

8.2 Overview of Approaches

The methodologies described in the subsequent chapters take the form of
sets of partial differential equations, in some cases supplemented by algebraic
equations. For a given flow, with the specification of the appropriate initial
and boundary conditions, these equations are solved numerically.

In a turbulent flow simulation, equations are solved for a time-dependent
velocity field which, to some extent, represents the velocity field U(x,t) for
one realization of the turbulent flow. In contrast, in a turbulence model,
equations are solved for some mean quantities, for example (U), (u;u;) and
. (The word “models” is used to refer to both simulations and turbulence
models, when the distinction is not needed.)

The two simulation approaches described are direct numerical simula-
tion (DNS, Chapter 9), and large-eddy simulation (LES, Chapter 13). In
DNS, the Navier-Stokes equations are solved to determine U(x,t) for one
realization of the flow. Because all lengthscales and timescales have to be
resolved, DNS is computationally expensive; and, because the computa-
tional cost increases as Re?, this approach is restricted to low-to-moderate
Reynolds number flows. In LES, equations are solved for a “filtered” velocity
field U(x,t), which is representative of the larger-scale turbulent motions.
The equations solved include a model for the influence of the smaller-scale
motions which are not directly represented.

The approaches described in Chapters 10 and 11 are called RANS (Reynolds-
averaged Navier-Stokes), since they involve the solution of the Reynolds
equations to determine the mean velocity field (U). In the first of these
approaches, the Reynolds stresses are obtained from a turbulent viscosity
model. The turbulent viscosity can be obtained from an algebraic relation
(as in the mixing-length model) or it can be obtained from turbulence quan-
tities such as k& and e for which modelled transport equations are solved.
In Reynolds-stress models (Chapter 11), modelled transport equations are
solved for the Reynolds stresses, thus obviating the need for a turbulent
viscosity.

The mean velocity (U) and the Reynolds stresses (u;u;) are the first
and second moments of the Eulerian PDF of velocity f(V;x,t). In PDF
methods (Chapter 12), a modelled transport equation is solved for a PDF
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such as f(V;x,t).

8.3 Criteria for Appraising Models

The purpose of this section is to provide an overview of the criteria used in
appraising models.

Historically, many models have been proposed and many are currently
in use. It is important to appreciate that there is a broad range of turbulent
flows, and also a broad range of questions to be addressed. Consequently
it is useful and appropriate to have a broad range of models, that vary in
complexity, accuracy, and other attributes.

The principal criteria that can be used to assess different models are

(i) Level of description
(ii

) Completeness

(iii) Cost and ease of use
)
)

(iv) Range of applicability
(v) Accuracy

As examples to elaborate on these criteria, we consider two models—the
mixing-length model and DNS which are at the extremes of the range of
approaches.

Recall that DNS (direct numerical simulation) consists of solving the
Navier-Stokes equations to determine the instantaneous velocity field U(x, t)
for one realization of the flow. The mixing-length model (applied to statistically-
stationary two-dimensional boundary-layer flows) consists of the boundary-
layer equations for (U(z,y)) and (V(z,y)), with the Reynolds shear stress
and the turbulent viscosity being obtained from the model equations

(uv) = —vr aé?, (8.1)
and U
=02 ;—y>‘ : (8.2)

The mixing length £,,(x,y) is specified as a function of position.

Level of Description. In DNS, the flow is described by the instantaneous
velocity U(x, t), from which all other information can be determined. For ex-
ample, flow visualizations can be performed to examine turbulent structures,
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and multi-time, multi-point statistics can be extracted. In the mixing-length
model, on the other hand, the description is at the mean-flow level: apart
from the specified mixing length, the only quantities represented directly are
(U) and (V). No information is provided about PDF’s of velocity, two-point
correlations, or turbulence structures, for example. The limited descrip-
tion provided by mean-flow closures (such as the mixing-length model) is
adequate in many applications. The issue is more that a higher level of de-
scription can provide a more complete characterization of the turbulence,
leading to models of greater accuracy and wider applicability.

Completeness. A model is deemed complete if its constituent equations
are free of flow-dependent specifications. One flow is distinguished from
another solely by the specification of material properties (i.e., p and v) and
of initial and boundary conditions. DNS is complete, whereas the mixing-
length model is incomplete: the mixing length £,,,(z,y) has to be specified,
and the appropriate specification is flow dependent.

Incomplete models can be useful for flows within a narrow class (e.g.,
attached boundary layers on airfoils) for which there is a body of semi-
empirical knowledge on the appropriate flow-dependent specifications. But
in general, completeness is clearly desirable.

Cost and Ease of Use. In all but the simplest of flows, numerical methods
are required to solve the model equations. The difficulty of performing a
turbulence-model calculation depends both on the flow and on the model.

Table 8.1 provides a categorization of turbulent flows according to their
geometry. The computational difficulty increases with the statistical dimen-
sionality of the flow: it decreases if the flow is statistically stationary, and
decreases further if boundary-layer equations can be used.

In some approaches (e.g., DNS) the computational cost is a rapidly in-
creasing function of the Reynolds number of the flow; whereas in others (e.g.,
mixing length) the increase in cost with Reynolds number is insignificant or
non-existent.

The task of performing a turbulent flow calculation for a particular flow
can be considered in two parts. First, the computer program to solve the
model equations has to be obtained or developed, and set up for the flow
at hand (e.g., by specifying appropriate boundary conditions). Second, the
computer program is executed to perform the calculation, and the required
results are extracted. The cost and difficulty of the first step depends on the
available software and algorithms, and on the complexity of the model. The
effort required to develop a computer program for a particular class of flows
and models can be very significant, and is therefore a substantial impediment
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Table 8.1: Examples of turbulent flows of different computational difficulty.
The difficulty increases downwards and to the right.

Dimensionality | Boundary Layer Statistically Sta- Not Statistically
number of direc- | statistically station- tionary Stationary
tions of statistical | ary, boundary-layer
inhomogeneity approximations
apply
OD homogeneous
shear flow
1D fully-developed temporal mixing
pipe or channel layer
flow;  self-similar
free shear flows®
2D flat-plate boundary flow through a sud- flow over an oscil-
layer; jet in a co-flow den expansion in a lating cylinder
2D duct
3D boundary layer on a  jet in a cross-flow; flow in the cylinder
wing flow over an air- of a reciprocating
craft or building engine

“In similarity variables, turbulence-model equations for 2D self-similar free shear flows
have a single independent variable.

to the evaluation and use of new models requiring new programs. It is,
however, a “one-time cost”.

The cost and difficulty of the second part—performing the computation—
depends on the scale of computer required (e.g., workstation or supercom-
puter), on the amount of human time and skill needed to perform the com-
putation, and on the computer resources consumed. These are “recurrent
costs.”

In terms of computer time consumed, what computational cost is accept-
able? The answer can vary by a factor of a million, depending on the context.
Peterson et al. (1989) suggest that about 200 hours of CPU time on the
most powerful supercomputers is the upper reasonable limit on “large-scale
research” calculations. (The channel-flow DNS of Kim et al. 1987 required
250 hours.) Very few calculations of this scale are performed. For “appli-
cations” Peterson et al. (1989) suggest that a more reasonable time is 15
minutes CPU time on the most powerful supercomputers, which corresponds
to 25 hours of CPU time on a workstation of one hundredth the speed. To
perform engineering design studies on a workstation—requiring “repetitive”
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turbulent flow calculations—CPU times of a minute or less per calculation
are desirable. The ratio between the sizes of these “repetitive,” “applica-
tion” and “large-scale research” computations is 1: 1.5 x 103 : 1.2 x 10°.

The amount of computation measured in flops (floating-point opera-
tions) that can be performed in a given time is determined by the speed of
the computer, measured in megaflops, gigaflops or teraflops, i.e., 105,107
or 10'? flops per second.! Figure 8.1 shows the peak speed of the largest
supercomputers over a 30 year period. It may be seen that the speed has in-
creased exponentially, by a factor of 30 per decade. This is a remarkable rate
of increase—a factor of a thousand in 20 years, and a million in 40 years.
While there is no sound basis for extrapolation beyond a few years, it is
nevertheless generally supposed that this trend will continue (Foster 1995).
Consequently, today’s “research” approaches may be feasible for “applica-
tions” in 20 years, and for “repetitive” calculations in 40 years. On the other
hand, this forty-year span between “large-scale research” and “repetitive”
computations again illustrates the need for a range of models, differing in
their computational requirements.

(The absolute speeds shown on Fig. 8.1 need to be viewed with caution.
The speed achieved in practice may be less than the peak speed by one or
even two orders of magnitude. Typically only a fraction (e.g., one eighth)
of the processors of a parallel computer are used, and only 20-50% of the

!Note that flops is number of operations, whereas megaflops is a rate, i.e., number of
operations (in millions) per second.
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peak speed is achieved on each processor. It should also be appreciated that,
while here the focus of the discussion is on CPU time, memory can also be
a limiting factor.)

Range of Applicability. Range of Applicability Not all models are appli-
cable to all flows. For example, there are many models based on velocity
spectra or two-point correlations, which are applicable only to homogeneous
turbulence. (Such models are not considered here, but are described in
the books of Lesieur 1990 and McComb 1990.) As a second example, par-
ticular mixing-length models typically make assumptions about the flow
geometry in the specification of the mixing length, so that their applica-
bility is confined to flows of that geometry. Computational requirements
place another—though nonetheless real—limitation on the applicability of
some models. In particular, for DNS the computational requirements rise so
steeply with Reynolds number that the approach is applicable only to flows
of low or moderate Reynolds number. This limitation is examined in more
detail in Chapter 9.

In this book, attention is focused on the velocity field in constant-density
flows. Tt should be appreciated, however, that in many flows to which tur-
bulence models are applied there are additional phenomena, such as heat
and mass transfer, chemical reactions, buoyancy, compressibility, and multi-
phase flow. An important consideration, therefore, is the extent to which the
approaches considered here are applicable to or can be extended to these
more complex flows.

It is emphasized that in these considerations we separate applicability
from accuracy. A model is applicable to a flow if the model equations are
well-posed and can be solved, whether or not the solutions are accurate.

Accuracy. It goes without saying that accuracy is a desirable attribute
of any model. In application to a particular flow, the accuracy of a model
can be determined by comparing model calculations with experimental mea-
surements. This process of model testing is of fundamental importance and
deserves careful consideration. As shown in Fig. 8.2, the process consists of
a number of steps, several of which introduce errors.

For a number of reasons, the boundary conditions in the calculations
may not correspond exactly to those of the measured flow. A flow may be
approximately two-dimensional, but may be assumed to be exactly so in the
calculations. Boundary conditions on some properties may not be known,
and so have to be estimated; or, they may be taken from experimental data
which contain some measurement error.

The numerical solution of the model equations inevitably contains nu-
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Figure 8.2: Chart illustrating that the discrepancy € between measured and calcu-
lated flow properties stem from: model inaccuracies, €model ; NumMerical errors, €num;
measurement errors €meas; and from discrepancies in the boundary conditions, €y, ¢..
(The equation given for € is merely suggestive: the errors do not add linearly.)
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merical error. This may be from a number of sources, but it is often dom-
inated by spatial truncation error. In a finite-difference or finite-element
method, for example, this error scales as a positive power of the grid spac-
ing, Az, while the computational cost increases with 1/Az—possibly as a
positive power. Many published turbulence-model calculations contain sig-
nificant numerical errors, either because the available computer resources do
not allow a sufficiently fine grid spacing, or, put bluntly, because the calcu-
lations are performed with insufficient care or regard for numerical accuracy.

In summary, as depicted in Fig. 8.2, the discrepancy between measured
and calculated flow properties arise from

(i) inaccuracies of the model

(ii) numerical error
(iii) measurement error
(iv) discrepancies in the boundary conditions.

The important conclusion is that a comparison between measured and cal-
culated flow properties determines the accuracy of the model only if the
errors arising from (ii)—(iv) are relatively small. In particular, there is a
danger of drawing false conclusions about model accuracy from calculations
containing large or unquantified numerical errors. These issues are discussed
further by Coleman and Stern (1997).

Final Remarks. The suitability of a particular model for a particular
turbulent flow problem depends on a weighted combination of the criteria
discussed above; and the relative weighting of importance of the different
criteria depends significantly on the problem. Consequently, as mentioned
at the outset, now and into the future, there is not one “best” model, but
rather there is a range of models that can usefully be applied to the broad
range of turbulent flow problems.



